Close Login
Register here
Forgot password
Forgot password
or
or

Close
Close Inspiration on environmental sustainability, every month.

Currently 5,988 people are getting new inspiration every month from our global sustainability exchange. Do you want to stay informed? Fill in your e-mail address below:

Close Receive monthly UPDATES ON ENVIRONMENTAL SUSTAINABILITY IN YOUR MAILBOX EVERY MONTH.

Want to be kept in the loop? We will provide monthly overview of what is happening in our community along with new exciting ways on how you can contribute.

Close Reset password
your profile is 33% complete:
33%
Update profile Close

Energy solar cells from organic origin  15 percent more efficiency | Breaking News Solar

Solar Cells From Organic Origin: 15 Percent More Efficiency

Share this post
by: Hans van der Broek
solar cells from organic origin  15 percent more efficiency | Breaking News

In an advance that makes a more flexible, inexpensive type of solar cell commercially viable, University of Michigan researchers have demonstrated organic solar cells that can achieve 15 percent efficiency. This level of efficiency is in the range of many solar panels, or photovoltaics, currently on the market.
"Organic photovoltaics can potentially cut way down on the total solar energy system cost, making solar a truly ubiquitous clean energy source," said Stephen Forrest, the Peter A. Franken Distinguished University Professor of Engineering and Paul G. Goebel Professor of Engineering, who led the work.
University Michigan's big M sign
At 15 percent efficiency and given a 20-year lifetime, researchers estimate organic solar cells could produce electricity at a cost of less than 7 cents per kilowatt-hour. In comparison, the average cost of electricity in the U.S. was 10.5 cents per kilowatt-hour in 2017, according to the U.S. Energy Information Administration.

Organic solar cells incorporate carbon into their construction

Silicon-based inorganic solar panels are costly to make--composed of thick, rigid sheets that require fixed installation points. But carbon-based organic solar cells could be inexpensively manufactured in rolls that are thin enough to bend and curve around structures or within clothing, and made any color, even transparent, to blend in to their environment.
Despite these advantages, organic solar cells have lacked the efficiency required to compete with conventional energy sources. "For the last couple of years, efficiency for organic photovoltaics was stuck around 11 to 12 percent," said Xiaozhou Che, a doctoral candidate in the Applied Physics Program and first author of a new study published in Nature Energy To break them out of this rut, the researchers combined multiple advancements in design and process. First, they designed a system that combines specialized layers to absorb both visible and infrared light. Essentially they stacked two organic solar cells, one capable of absorbing light from the visible spectrum starting at 350 nanometers in wavelength, and another capable of absorbing near-infrared light up to 950 nanometers in wavelength.
"By themselves, the cells achieve 10- to 11-percent efficiency," Che said. "When we stack them together, we increase light absorption and efficiency improves to 15 percent with an antireflection coating." Stacking the cells required a breakthrough in process.
hand with blue glove holding a organic solar cell
The team developed interconnecting layers that prevent damage to the first cell, and still allow light and electrical charges to pass through. "That's considered a difficult process because there's a chance the liquid used in processing the top cell will dissolve the layers already deposited underneath," Che said. Finally, the team demonstrated that their new design, materials and process have a high fabrication yield of over 95 percent. This means the researchers successfully created almost all devices without short circuits, and is important for scaling up fabrication to an industrial level.

Despite setting record efficiency, the team believes they can push their progress even further

"We can improve the light absorption to increase electric current, and minimize the energy loss to increase voltage," Che said. "Based on calculations, an 18-percent efficiency is expected in the near future for this type of multijunction device."

By: Michigan Engineering

https://www.whatsorb.com/category/energy

Messange
You
Share this post
profilepic
World traveler, entrepreneur and environmental activist. Has countless ideas and set up several businesses in the Netherlands and abroad. Has an opinion about everything and unlimited thoughts about a better world. He likes hiking and climbed numerous 5.000 m.
profileimage
World traveler, entrepreneur and environmental activist. Has countless ideas and set up several businesses in the Netherlands and abroad. Has an opinion about everything and unlimited thoughts about a better world. He likes hiking and climbed numerous 5.000 m.
Get updates on environmental sustainability in your mailbox every month.

Solar Cells From Organic Origin: 15 Percent More Efficiency

I n an advance that makes a more flexible, inexpensive type of solar cell commercially viable, University of Michigan researchers have demonstrated organic solar cells that can achieve 15 percent efficiency. This level of efficiency is in the range of many solar panels, or photovoltaics, currently on the market. "Organic photovoltaics can potentially cut way down on the total solar energy system cost, making solar a truly ubiquitous clean energy source," said Stephen Forrest, the Peter A. Franken Distinguished University Professor of Engineering and Paul G. Goebel Professor of Engineering, who led the work. At 15 percent efficiency and given a 20-year lifetime, researchers estimate organic solar cells could produce electricity at a cost of less than 7 cents per kilowatt-hour. In comparison, the average cost of electricity in the U.S. was 10.5 cents per kilowatt-hour in 2017, according to the U.S. Energy Information Administration. Organic solar cells incorporate carbon into their construction Silicon-based inorganic solar panels are costly to make--composed of thick, rigid sheets that require fixed installation points. But carbon-based organic solar cells could be inexpensively manufactured in rolls that are thin enough to bend and curve around structures or within clothing, and made any color, even transparent, to blend in to their environment. Despite these advantages, organic solar cells have lacked the efficiency required to compete with conventional energy sources. "For the last couple of years, efficiency for organic photovoltaics was stuck around 11 to 12 percent," said Xiaozhou Che, a doctoral candidate in the Applied Physics Program and first author of a new study published in Nature Energy To break them out of this rut, the researchers combined multiple advancements in design and process. First, they designed a system that combines specialized layers to absorb both visible and infrared light. Essentially they stacked two organic solar cells, one capable of absorbing light from the visible spectrum starting at 350 nanometers in wavelength, and another capable of absorbing near-infrared light up to 950 nanometers in wavelength. "By themselves, the cells achieve 10- to 11-percent efficiency," Che said. "When we stack them together, we increase light absorption and efficiency improves to 15 percent with an antireflection coating." Stacking the cells required a breakthrough in process. The team developed interconnecting layers that prevent damage to the first cell, and still allow light and electrical charges to pass through. "That's considered a difficult process because there's a chance the liquid used in processing the top cell will dissolve the layers already deposited underneath," Che said. Finally, the team demonstrated that their new design, materials and process have a high fabrication yield of over 95 percent. This means the researchers successfully created almost all devices without short circuits, and is important for scaling up fabrication to an industrial level. Despite setting record efficiency, the team believes they can push their progress even further "We can improve the light absorption to increase electric current, and minimize the energy loss to increase voltage," Che said. "Based on calculations, an 18-percent efficiency is expected in the near future for this type of multijunction device." {youtube} By: Michigan Engineering https://www.whatsorb.com/category/energy